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Abstract

The Madison Symmetric Torus uses multiple diagnostics to measure electron temper-

ature (Te). The soft x-ray (SXR) diagnostic measures Te from x-ray emission in the

plasma and the Thomson Scattering (TS) diagnostic records scattered laser photons

to measure Te and electron density ne. Bayesian analysis techniques have been devel-

oped for the SXR system. A multiple helicity (MH), 1500keV plasma shot has been

analyzed within this Bayesian framework to create a distribution of the most likely

temperature. This distribution has been combined with a similar distribution of the

TS measurement to give a single distribution of the most likely Te in the plasma.

By combining the data from both diagnostics with Bayesian probabilities uncertainty

of the model fit is lower than either of the diagnostics alone. A rigorous calculation

of systematic uncertainties of the SXR diagnostic is given. The relative systematic

uncertainties are shown to be < 2% of the signal for all 80 of the silicon photodiodes

used. The absolute uncertainty is shown to be a nearly constant proportion of the

signal over a large range of possible plasma conditions.
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Chapter 1

Introduction

One of the focuses in the study of plasmas is x-ray emission and electron temperature.

Understanding the relation between the two of these, and their connection to other

plasma characteristics, such as density, plays an important role in the study of plasma

confinement and stability. The Madison Symmetric Torus is a magnetic confinement

device, in a reversed field pinch (RFP) configuration, that has multiple diagnostics

dedicated to measuring x-ray emission and electron temperature. This thesis will focus

on two diagnostics that independently measure electron temperature, Te, the soft x-ray

(SXR) diagnostic, and the Thomson Scattering (TS) diagnostic. These two diagnostics

provide independent measurements of Te. A continuing problem in understanding how

plasmas behave is the amount of uncertainty in each of these measurements, which

can sometimes be as substantial as 15-20% of the total signal. Efforts are made to

reduce these errors by combining the data within a single framework.

1.1 Thesis Overview

In this thesis, data from the SXR and TS diagnostic are combined using the

integrated data analysis (IDA) technique, to give a single, most likely temperature
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profile and a most likely core temperature. IDA implements Bayesian statistics to

make use of all the available information from each diagnostic. This is shown to

decrease uncertainty of the model fit. Chapter 1 gives an introduction to the SXR

and TS diagnostics. It describes the importance of x-ray emission and the double-foil

technique for Te measurements. It also gives a brief overview of the TS measurement

used on MST.

Chapter 2 gives an overview of Bayesian Probability Theory and its benefits.

It describes the application of Bayesian theory to the SXR diagnostic and gives the

result of combining the SXR and TS in a Bayesian framework. Finally, this Chapter

elaborates on some of the challenges and limitations encountered while implementing

IDA.

Chapter 3 gives a rigorous error propagation for the SXR diagnostic. The sys-

tematic uncertainty is shown to be slightly smaller than previously assumed. Although

the total uncertainty is dominated by random noise from the differential amplifiers,

this analysis offers a confirmation of the scale of the estimated systematic error. Chap-

ter 4 summarizes the results of the thesis and describes further development options

of IDA.

1.2 Soft X-Ray Emission

A major contribution to x-ray emission in MST comes from free-free bremsstrahlung

radiation. When an electron passes through the field of an ion, it is accelerated and

emits bremsstrahlung radiation as x-rays. Two other major sources of x-ray emission

include line radiation, when an excited electron decays into lower levels, and recom-

bination radiation, when an ion recaptures an electron into a bound quantum state.
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Although line radiation and recombination steps can contribute a great deal of x-rays,

by filtering the light through beryllium (Be), their contributions to the total x-ray

emission can be minimized. Filter bands can be chosen to avoid known radiation

lines and as long as the recombination steps also are outside the filter bands then the

recombination radiation contribution cancels out in the temperature calculation [1].

After accounting for these other contributions, the x-ray emission can be considered

a function of only plasma density, temperature, and effective atomic mass.

The SXR diagnostic on MST uses this filtering technique to study bremsstrahlung

radiation. The measurement of these X-rays can give important information about

the temperature and the magnetic structure of the plasma. Electrons will follow the

magnetic field lines in a sufficiently hot plasma, so, X-ray emission from these elec-

trons map to the magnetic structure of the plasma. When the magnetic field lines

wrap around the torus and reconnect with themselves it forms a magnetic flux surface.

The temperature and density equilibrate along these magnetic field lines much faster

than across magnetic field lines, so to first order, flux surfaces are surfaces of constant

temperature and density [1]. Figure 1.1 shows the magnetic topology for an example

flux surface and a cross section of the tomographic reconstruction of x-ray emission.

Figure 1.2 shows an example flux surface mapping and the line-of-sight for a SXR

chord.

1.3 The Double Foil Direct-Brightness Method

There are a couple of different ways that the SXR diagnostic can measure tem-

perature. The first is a tomographic reconstruction. This method can give great 2D

representation of the plasma temperature but it is very sensitive to small variations
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Figure 1.1: The magnetic topology of an example flux surface (particularly
the m=1, n=7 magnetic mode) and a cross section of the reconstructed
emissivity. (Image courtesy of McGarry [1]).
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Figure 1.2: An example of the flux surfaces for shot with a magnetic struc-
ture at 18◦ P. The blue dot is the geometric center. The red line is chord 4
from SXR-C. The red dot is the location along the chord that is closest to
the geometric axis. The cyan line and dot represent the the innermost flux
surface that the chord intersects. The SXR will measure the temperature
of this flux surface with the direct-brightness Te method. (Image courtesy
of M. McGarry [1]).
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in measured brightness. The direct-brightness method (DB) is the other means to

measure temperature and is how the temperature measurements were made for the

remainder of this thesis.

In a pure bremsstrahlung plasma, the electrons of a single temperature Te are not

all at the same energy. Instead, there is a distribution over a wide range of energies,

given by the Maxwell-Boltzman distribution. The Be acts as a high-pass filter for

the photons with sufficient energy. Silicon (Si) photodiodes absorb the x-rays that

pass the filters and converts them into a current that can be measured. The currents

produced by the photodiodes are very small and need to be amplified by differential

amplifiers before they can be digitized and recorded. For a plasma with SXR emission

ε(E), passing through a filter with transmission function T (E,Be), and absorbed by

diode with absorption function A(E), the measured brightness is the line-integrated

emissivity over the desired energy range, along the line-of-sight of the diode (l).

f(l) =

∫
L

∫
E

T (E,Be)A(E)ε(E) dl dE (1.1)

Pairs of diodes are aligned close together, so that they share a line-of-sight and there-

fore, the same line-integral, but they view the plasma through different thickness

filters. Because density and effective atomic mass, Zeff , are not functions of energy,

the ratio of the measured emissivities is only dependent on electron temperature [3].

The ratio of two emissivities, ε1, ε2, that were filtered with two different thickness

filters, is defined by:

R =
f1

f2

=

∫
l
ε1 dl∫

l
ε2 dl

(1.2)
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Temperature is not a line-integrated quantity and therefore cannot be de-convolved

from a ratio calculation to give temperatures at specific intervals in the line-of-sight.

Instead, it is assumed to be the hottest temperature along the line of sight. This

corresponds to the temperature of the innermost flux surface that the line-of-sight

intersects.

The SXR system has 4 different probes at the same toroidal location on MST (at

90◦ T) but varying poloidal locations. Each probe has 20 silicon photodiodes aligned

in pairs with one viewing the plasma through a thick (∼ 800µm) Be filter and the

other through a thin (∼ 400µm) filter. This gives a total of 80 unique emissivity mea-

surements and 40 unique lines-of-sight (see figure 1.3) for temperature measurements.

1.4 Thomson Scattering Te Measurement

The other temperature measurement on MST comes from the Thomson Scat-

tering (TS) diagnostic. Photons incident on an free, charged particle will be absorbed

and another, separate photon will be emitted. The energy of the emitted photon is

dependent on the wavevector of the incident photon and the velocity of the absorbing

electron. The scattering direction of a single photon is determined by this wave vector

and velocity. If many photons with the same polarization and energy are incident on

a volume, the intensity of the scattered light is proportional to sin2(χ), where χ is the

angle between the scattered photon trajectories and the electric field of the incident

photons [4].

The TS diagnostic is a multi-point laser system that uses two independently trig-

gered Nd:YAG lasers and a 15 m remote-controlled beam line to generate the incident

photons [5]. The scattered photons are collected by 21 different polychrometers with
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Figure 1.3: A cross section of MST showing the 10 lines-of-sight for each
SXR probe. (Image courtesy of M. McGarry [1]).
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avalanche photodiode modules. The 21 polychrometers each provide spatially unique

temperature and density measurements for the plasma, at 222◦ T. The 21 TS points

form a vertical line through the bottom half of the MST vessel as seen in figure (1.4).

Figure 1.4: The schematic of the TS field of view. Photons scattered from
21 spatial points between the plasma core and MST are collected at the
image plane. Diagram courtesy of Rob O’Connell.
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Chapter 2

Integrated Data Analysis

The first step to combining data from separate diagnostics is expressing the measure-

ments of each diagnostic in terms of Bayesian probabilities. The TS data has already

been put into a Bayesian framework [4, 6]. In this thesis, emissivity data from the

SXR system of a multiple helicity (MH) plasma with core temperature of ∼ 1500eV

will be analyzed using Bayesian probabilities. The SXR data is combined with the TS

data and a probability distribution function (PDF) of electron temperature is found.

The following section gives a brief introduction to Bayesian probabilities, describes

some benefits and drawbacks to Bayesian methods, and presents the work that has

been done so far to integrate the TS and SXR measurements into a single estimate

of Te. A complete introduction of Bayesian probability theory can be found in D.S.

Sivia’s book “Data Analysis: A Bayesian Tutorial” [7].

2.1 Bayesian Statistics

The traditional approach to statistics focuses on the frequency of observing some

data, given some hypothesis about its behavior. This method, often called ‘frequentist

statistics’, assumes that the data observed is random, can take a probability between
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0 and 1, and that the hypothesis is fixed, it is either true or false. Bayesian statistics

takes the opposite approach: the data is fixed, either true or false, and the hypothesis is

random, with an associated PDF. A very important feature of Bayesian theory is that

it can take into account all relevant background information and any measurement

uncertainties.

The following expression is read “The probability that a specific value of X is

true given Y is true and any background information, I”

P (X|Y, I) (2.1)

Starting with two rules from probability theory we will be able to derive the

basics of Bayesian probability theory:

The product rule (the probability that X and Y are both true):

P (X, Y |I) = P (X|Y, I)P (Y |I) = P (Y |X, I)P (X|I) (2.2)

and the addition rule:

P (X|I) + P (X̄|I) = 1 (2.3)

(X̄ means that “X is not true”). The addition rule just states that probability of

getting X and the probability of not getting X must add to 1.

Rearranging Equation (2.2) gives Bayes Theorem:

P (X|I) =
P (Y |X, I)P (X, I)

P (X|Y, I)
(2.4)
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The main goal of Bayesian analysis is to find the probability that a given parameter or

quantity, X, is true based on the data measured, d, any uncertainties , σ, (systematic

or statistical), and relevant background information, I. Background information can

be as simple as “temperature cannot be negative” to some more substantial knowledge

about the particular system being studied. The probability of X being true, known as

the posterior probability (or just posterior), P (X|d, σ, I), is almost always very difficult

to directly calculate. Using Equation (2.4) it can be found with three quantities that

are generally much easier to calculate.

P (X|d, σ, I) =
P (d|X, σ, I)P (X|I)

P (d|I)
(2.5)

Equation (2.5) consists of three parts: the PDF or likelihood, P (d|X, σ, I), the prior,

P (X, I), and the evidence or normalization, P (d|I). The likelihood is the probability

of measuring the data, d, given a certain value of X. The prior is the probability of

measuring X given the background information. The prior usually can be assumed

to be a constant probability if the quantity X is within the ranges of the instruments

used to measure it [4]. The evidence is a normalization factor that ensures a total

probability of 1.

One immediate benefit from this framework is marginalization, the ability to

remove nuisance parameters and focus only on the parameters of interest, without

losing any information. Nuisance parameters can be parameters that enter the analysis

but are not particularily interesting, such as background signals, or even parameters

from measurements that are difficult to calibrate. An example of marginalization with

the SXR diagnostic can be found in § 2.4. A derivation of the marginalization equation
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can be found in [7] and the result is:

P (X|I) =

∫ +∞

−∞
P (X, Y |I)dY (2.6)

The PDF, P (X|I), still contains all of the information in P (X, Y |I), but the

dependence on Y has been removed by considering all possible values of Y. The power

of marginalization becomes even more apparent as more and more parameters are

being optimized; It provides a simple way to visualize the distribution of a single one

variable or the interdependence of two variables using a contour plot.

2.2 Pros and Cons of Bayesian Statistics

There are many advantages to analyzing MST data in a Bayesian framework.

The first is that it provides a means of combining the information from many different

diagnostics in a rigorous manner. If a PDF can be generated for a parameter, X, using

one diagnostic, and another can be generated for the same parameter using another

diagnostic, then the information from both can be combined in a single distribution.

Another advantage of Bayesian statistics is that it can give a clear method for model

selection. The probability of getting the data, given a parameter X, P (d|X, σ, I), can

be a measure of the accuracy of a model. To compare two different models, the total

probability of getting the data, (d), with a model, (M1), is written as, P (d|M1). This

can be compared to the total probability of getting the data with a different model,

(M2), P (d|M2) [8]. A probability P (d|M), is the integral over all parameters of a

given model and is a concrete tool to discriminate between models.

There are some notable drawbacks to implementing Bayesian statistics. The first
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is that computation time can quickly become an issues if there are many parameters

in the model and a ’brute force’ method is used. If a full PDF for a model with pa-

rameters, Xi, P (Xi|d, σ, I), is created, then it is necessary to evaluate the model for

each combination of parameters. As the parameter space is discretized more finely,

the amount of computing time needed scales linearly with the number of iterations.

Problems can arise very quickly if there are many parameters or there is a need to

distinguish very subtle differences in parameter value. One way to overcome this is

by implementing a search algorithm, such as a Markov Chain Monte Carlo (MCMC)

technique. These algorithms can take much more time to initially design than a

straightforward, full calculation, but can dramatically increase computing speed. Fur-

thermore, decreasing computation time, thereby increases the ability to analyze more

and more parameters. Another drawback is that it not always straightforward to cre-

ate PDFs that can be combined. This is still a problem with the combination of TS

and SXR data that is discussed in § 2.5.

2.3 Applying IDA to SXR

The distribution, P (d|X, σ, I), from the right hand side of Equation (2.5), is

calculated using a model for SXR emissivity and the known uncertainties. The model

generates the emissivity at all points in the plasma and integrates the detector lines

of sight to create a simulated brightness, for each possible combination of different pa-

rameters. The uncertainty of the measured brightness, σ, is a combination of system-

atic uncertainty in the geometry of the diagnostic and random error due to electronic

noise from the differential amplifiers. For each combination of model parameters, the

probability of getting the data is found by taking σ to be the variance of a Gaussian



15

distribution, centered at the line integrated brightness generated by the model. A

distribution is made for each parameter of the model, at each diode location. The

n-dimensional matrix of possible combinations of n parameters, for each diode, is re-

ferred to as the parameter space. The parameter space represents all possible outcomes

of the model, within the intervals and coarseness restrictions set for each parameter.

The parameter space does not need to be regenerated for each shot analyzed. A new

one is necessary only when the parameters are changed or a different model is chosen.

2.3.1 The Simplified SXR Model

The model predicts only the emission from bremsstrahlung radiation in a hydro-

gen plasma where there are no temperature or magnetic. The electron temperature

and density are assumed to be axisymmetric and monotonically decreasing from the

core out to the edge in the form of power-law functions:

Te(r) = Te(0)(1− (r/a)α)β (2.7)

ne(r) = ne(0)(1− (r/a)γ) (2.8)

where r/a is the radius normalized to the minor radius of MST and α, β, and γ are the

power-law exponents describing the profile shapes. In many multiple helicity (MH)

plasmas when there are relatively flat Te and ne profiles, this model is sufficient. This

model is very limited in that it cannot be used if there are temperature or density

structures. In the case of when structures are present, a different model is used,

described in detail in McGarry [1], The model combines an equilibrium temperature

and density (as in Equations (2.7) and (2.8)) with a gaussian shaped temperature
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island and a ring shaped density perturbation added on top, described by:

Te(r) = Te(0)(1− (r/a)α)β + ∆Tee
−(δrT−r)2/2∆r2T e−(δθ−θ)2/∆θ2 (2.9)

ne(r) = ne(0)(1− (r/a)γ) + ∆nee
−(δrn−r)2/2∆r2n (2.10)

In Equation (2.9), the Gaussian temperature perturbation has an amplitude ∆Te above

the equilibrium profile. It is centered at the point (δrT , δθ), with a radial width ∆rT ,

and a poloidal width ∆θ. The density profile of Equation (2.10) has a perturbation

amplitude ∆ne, centered at δrn, with width ∆rn and is not dependent on poloidal

angle [9].

The modeled and measured brightness are described in great detail in [1] and will

be briefly outlined here. The simplest model for line-integrated brightness (the mea-

sured quantity on MST) for a particular diode assumes SXR emission from bremsstrahlung

radiation. The emissivity, ε, is a function of electron temperature profile Te(r), density

profile ne(r), and the effective atomic number of the plasma, Zeff , at a radius (r):

ε =

∫
E

dE

{
Zeffn

2
e(r)√

Te(r)
e−

E
Te(r)

}
(2.11)

To simulate the brightness seen by each diode, the transmission of the Be filters

T (E,Be), the X-ray absorption of the silicon photodiode A(E), and a geometric factor,

fg , defined by the cone of sight of the diode must be incorporated. The geometric

factor is defined as:

fg =
AdAph
4πd2

cos4γ (2.12)
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Ad is the detector area, Aph is the pinhole area, d is the distance from the pinhole

plane to the detector plane, and γ is the angle between the line-of-sight and the normal

vector of the detector plane [10].

The Be filter and Si transmission are given by the transmission function:

T (t, E) = e−tµ(E) (2.13)

for a material of thickness (t) and absorbing coefficient µ(E) to each material [11].

The absorbing coefficient is defined as:

µ = c× (λa)× (Zb) (2.14)

for material with atomic number Z and X-rays of wavelength λ . The coefficients

a, b, c for both beryllium and silicon can be found in Bardet [12].

The measured x-ray emission by the photodiodes, for any location (r), in a pure

bremsstrahlung plasma then becomes:

εobs =

∫
E

dEfgT (E,Be)A(E)

{
Zeffn

2
e(r)√

Te(r)
e−

E
Te(r)

}
(2.15)

where A(E) is the absorption of the Si diode (or 1− TSi(t, E)).

The SXR brightness measured by a silicon diode is a line-integrated measurement

along the line-of-sight of that particular diode (l):

f(l) =

∫
l

dl ε (2.16)



18

so that the final measured brightness of each line-of-sight is:

f(L) =

∫
l

∫
E

dl dE fgT (E,Be)A(E)

{
Zeffn

2
e(r)√

Te(r)
e−

E
Te(r)

}
(2.17)

This line-of-sight integral is unique to each of the 80 different viewing chords on the

SXR diagnostic, all of which provide unique information about the plasma. Using this

model, assuming a known profile for, ne(r), the most probable brightness is calculated

for both the thick and the thin filters. Then, the ratio of these two brightnesses

provides the most likely temperature. This temperature distribution is then combined

with the TS temperature distribution to give a single distribution for temperature.

2.3.2 Parameter Space Generation

A parameter space was formed by simulating the line-integrated brightnesses for

each SXR viewing chord, using the model for Equation (2.17), for a large number

of parameter combinations. So far, the only parameters that were varied, for each

viewing chord, were the core temperature, Te(0), and the power-law parameters for

the temperature profile, α, and β. The density profile parameters used were an Abel

inversion of the line-integrated density [13] , ne(0) = 1.13 · 1013cm−3, and γ = 4.2.

The temperature of the high current PPCD shots being analyzed are, in general,

∼ 1400eV . So, in order to incorporate all possible variations, the core temperatures

in the parameter space were varied from 500eV to 2keV in steps of 6eV, far below

resolution of the SXR system. The measurements of α and β from previous plasma

shots were analyzed to find a reasonable range. A range from 7 to 12 was chosen for α

and 4 to 19 for β. Different alpha and betas were testing to find the model’s sensitivity
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to small changes in either parameter. No change was noticeable for steps smaller than

0.5, so, both power-law parameters were varied in steps of 0.25 to ensure adequate

resolution. In total, the parameter space consisted of 385581 different iterations of the

SXR model for each diode.

2.4 Results

Bayesian statistics have been used to analyze a high-current improved confine-

ment (PPCD) plasma shot, number 1130623047 at t = 20.5ms. The raw Te data from

SXR is shown in Figures 2.1 and 2.2, and the raw data from TS is shown in Figure

2.3. Both diagnostics measure an approximate core temperature around 1500eV, but,

there are sometimes large point-to-point variations and error bars of ∼ ±100eV. The

calculated values of alpha and beta from the tomographic inversion were 7.2 and 14.2,

respectively.

Figures 2.4 and 2.5 give the posterior probability of most likely electron temper-

ature, P (Te(r)|d, σ, I), from the SXR and TS diagnostics, respectively. Figure 2.6 is

the combined posterior distribution for the most likely temperature profile given the

data from SXR and TS. The point-to-point variations seen in the raw data are not

present in the posterior, and the uncertainty is greatly reduced.

In Figure 2.7, α, β, and spatial location are marginalized to give a distribution

for the most likely core temperature, Te(0), for SXR and TS. The width of the dis-

tributions gives a visualization of the relative uncertainty of the two diagnostics. The

more spiked TS profile provides a more confident most probable core temperature,

slightly hotter than predicted by the SXR data and this will weight the combined

distribution in favor of the TS profile. Figure 2.8 is the most likely core temperature
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Figure 2.1: Measured direct brightness temperature for SXR-A (black) and
SXR-B (blue) from shot number 1130623047 at t = 20.5ms.
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Figure 2.2: Measured direct brightness temperature for SXR-C (black) and
SXR-D (blue) from shot number 1130623047 at t = 20.5ms.
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Figure 2.3: The raw temperature data from TS for shot number 1130623047
at t = 20.5ms.



23

Figure 2.4: The posterior for the radial Te(r) profile from the SXR data,
P (Te(r)|dSXR, σ, I)
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Figure 2.5: The posterior for the radial Te(r) profile from the TS data,
P (Te(r)|dTS, σ, I)
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Figure 2.6: The combined posterior for the radial Te(r) profile from SXR
and TS, P (Te(r)|dSXR, dTS, σ, I)
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Figure 2.7: Marginalizing α and β from the parameter space leaves a dis-
tribution only of core temperature. The broader profile of SXR represents
the larger error associated with the SXR system versus the TS diagnostic.

given the SXR and TS data.

The most likely α and β values are found by marginalizing temperature and

spatial location. The individual posteriors, P (α, β|d, σ, I), for SXR and TS are shown

in Figures 2.9 and 2.10, respectively. The posterior from SXR in Figure 2.9, is not

normalized but that will not change the features, it will only shift the absolute value

of the distributions. The PDF from SXR has very broad features, indicating a general

inability to resolve α or β. However, in Figure 2.10, the TS distribution has a much

sharper peak with most likely values of α =∼ 7.75 and β =∼ 13.75. When combined,
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Figure 2.8: The posterior distribution for core temperature,
P (Te|dSXR, dTS, σ, I), where α, β and radius, (r), have been marginalized.
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Figure 2.9: The distributions for α and β given the SXR data.
P (α, β|dSXR, σ, I). The darker red areas indicate a more likely outcome.
The very broad features emphasize some of the limitations of the SXR sys-
tem in precisely measuring either α or β. The range for the axis is set using
known information about values that α and β can take.

the total distribution is completely dominated by the TS probabilities as seen in Figure

2.11.

2.5 Challenges and Limitations

The first challenge encountered by the IDA project was limits in computation

time. The simple SXR temperature model from Equation (2.7), was used to analyze

plasmas without any temperature islands,. The density profile was directly taken from



29

Figure 2.10: The distributions for α and β given the TS data.
P (α, β|dTS, σ, I). The sharp peak is indicates very likely α and β values.
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Figure 2.11: The combined posterior distribution of α and β from TS and
SXR, P (α, β|dTS, dSXR, σ, I) The sharp peak in likelihood from TS con-
tributes much more than the broad SXR features.
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an Abel inversion of a line integrated ne [13], so that only three parameters needed to

be varied, Te(0), α, and β. The computation time, for the ∼ 3 · 105 iterations, was on

the order of one day using a standard desktop computer. In order to add temperature

and density island structures using equations (2.9) and (2.10), 10 more parameters will

need to be varied for each of the 80 diodes. If in the future, a model for Zeff would

also need to be used, introducing another 6-8 parameters. A conservative calculation

of the computation time needed to generate the necessary parameter space to study

only the full temperature profile, equation (2.9), was on the order of ∼ 70 years. Even

if the computation time could be significantly reduced, there would still be limited

flexibility if more information or parameters were to be added.

Another continuing challenge for the IDA project is finding an effective scheme

to spatially relate the temperature measurements from 40 chords on the SXR diagnos-

tic to the 21 Thomson scattering measurements. In order to combine the temperature

probability distributions of the two diagnostics, each SXR chord needs to be paired

with the TS measurement that views the most similar part of the plasma. Complicated

magnetic structures can make this increasingly difficult. Each SXR chord has a tem-

perature probability distribution for a spatial point specified by its impact parameter

p and angle φ, as defined in [1] and seen in Figure (2.12).

Each TS measurement also has a spatial location in the plasma, but because

it is installed at a different toroidal angle, it is not always obvious how to relate it

to SXR. In a plasma with no temperature or magnetic structures, the temperature

is only dependent on radius and not on poloidal angle. The simplest way to relate

the two diagnostics when there are temperature and magnetic structures is by flux



32

Figure 2.12: The coordinate system used for the SXR system. Each line-
of-sight is defined by the impact parameter, p, and angle φ.
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surface. If the flux surface is known for each SXR chord and for each TS point, then

probability distribution of the TS point is multiplied by the nearest SXR distribution

in flux surface space. The result is a final temperature distribution as a function of

flux surface. Ambiguity arises when emissivity is not monotonically decreasing as flux

surface radius increases. This happens when there is a large magnetic island structure

offset from the core and is known as a double axis configuration (DAx) plasma. It is

then possible to have the SXR emissivity decrease going outward from the core and

then increase again near the island and this creates two separate flux surfaces with

equal SXR emissivity. The code used to map TS and SXR to flux surface coordinates

has not yet been optimized for these DAx plasmas because of this ambiguity.
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Chapter 3

Full Uncertainty Propagation for SXR

Measurements

The accuracy of Bayesian probabilities is strongly dependent on the uncertainty of the

measurements being made. More accurate uncertainties will give a more reliable width

to the posterior pdf and ultimately more confidence in the most probable scenario.

Therefore, having a thorough understanding of all uncertainties in a measurement is

very important when using Bayesian methods. Until now, the systematic uncertainty

in the SXR measurement was only roughly approximated as 2% for each diode. In

this section, a rigorous analysis of systematic uncertainty in SXR diagnostic is pre-

sented. The relative uncertainties for each diode are shown to all be < 2% using a

full error propagation. To find the total systematic uncertainty for a direct brightness

measurement, the error for the geometric factor, fg, the transmission of Be, T (E,Be),

and absorption of Si, A(E), from the emissivity equation (2.17) need to be calculated.

The other portion of the line-integral,

Zeffn
2
e(r)√

Te(r)
e−

E
Te(r) ,
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is dependent on plasma conditions and does not add any systematic uncertainties.

Because fg, T (E,Be), and A(E) are all independent variables, the error in the their

product can be calculated using the standard variance formula. Including each inde-

pendent variable, Xi, with variance σ2
i , the total variance in the quantity, f(Xi) [14]

is:

σ2
f =

∑
i

(
σXi

∂f

∂Xi

)2

(3.1)

Defining a function g as:

g = fg ∗ T (E,Be) ∗ A(E) (3.2)

The variance of g is:

σ2
g = σ2

fg

(
∂g

∂fg

)2

+ σ2
T

(
∂g

∂T

)2

+ σ2
A

(
∂g

∂A

)2

(3.3)

Substituting g and σg into equation (2.17), the direct brightness measurement be-

comes:

f(L) =

∫
L

∫
E

dE dl (g ± σg) ε(E) (3.4)

The total uncertainty in the direct brightness measurement is the line-integral of the

product of the uncertainty in g with the portion of the integral dependent on plasma

conditions, ε(E):

σtotal =

∫
L

∫
E

dE dl σg ε(E) (3.5)
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3.1 Error in the Geometric Factor

The geometric factor (fg), in equation 2.12 accounts for the cone of sight of the

diodes. Ideally, the emissivity is a perfect line-integrated quantity through the plasma,

but because of the the non-zero area of the diodes and pinhole, this correction factor

must be used. The uncertainty in fg is dependent on uncertainties in the area of the

silicon diodes (Ad), the area of the pinhole (Aph), the distance from the pinhole to the

diode board (d) and the angle incidence (γ)of the line-of-sight normal to the detector

plane.

The length and width of the pinhole were manufactured and independently mea-

sured to be within the tolerance of 2.00± 0.01mm. The standard error of the area is

∼ 0.7%. The distance from pinhole to diode board, d, is 25.04mm. It was calculated

from three direct measurements of component parts within the probe head, using a

±10µm micrometer, and has standard error of 0.6%.

The standard variance formula is more complicated when two or more of the

variables Xi are not independent quantities. The angle of incident light, γ, is not

independent of the distance to the diode board, d. To avoid this problem, the value

cos γ is rewritten using trigonometric identities as:

cos γ =
d√

d2 + x2
(3.6)

where x is the distance from the diode to the pinhole in the direction tangent to

the diode surface. This substitution is also favorable because the error in the value
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x is known well. Each diode was placed and measured to be within of 50µm of its

intended location on the circuit board, independent of the other diodes. This keeps

σx from compounding as diodes move farther from the center of the board. The width

of the pinhole and the width of the diodes are in fact correlated to the distance x,

an uncertainty of 10µm in width can change the value of x by at most 5µm. The

error in x, (σx) is an order of magnitude larger than the error contribution from the

width and can be approximated as simply 50µm. Therefore the total relative error in

the geometric factor, fg varies by diode, depending on angle γ and ranges from about

1.1% to 1.6%.

3.2 Be Uncertainty

Each beryllium filter consists of a stack of individual foils. There are, generally,

5 stacked to make the 421µm thin filter and 9 or 10 stacked to make the 857µm thick

filter. Each foil has a thickness of ∼ 75−95µm thick measured to ±1µm and the total

Be filter thickness error σBe, is calculated as the variance of the individual foil errors

(σfoil):

σBe =
√∑

σ2
foil (3.7)

The error is then ∼ 0.5% for the thin filter and ∼ 0.4% for the thick filter. This is an

improvement on the rough 1% estimate that was assumed in McGarry [1].

The transmission of x-rays through the Be filters is dependent on both the energy

of the x-rays (E), the thickness of the filters (tBe), and the absorption coefficient µBe

and related by equation (2.13). X-ray transmission is very sensitive to µBe, which

is affected by impurity contributions in the Be. This dependence is currently being
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Figure 3.1: A cross section of the probe tip detailing the coordinates x, d,
and γ. This view only shows the pinhole, Be foils, line of sight, and diodes.
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investigated but is outside the scope of this thesis. The purity is assumed to be 100%

for the following calculations.

Because the Be foils are curved so that the effective thickness is constant for

all lines-of-sight, the only source of error is in the overall thickness (σBe) calculated

above. Following the standard variance formula, the uncertainty in the transmission

function (T (E)) is:

σT (E) = T (E)µBe(E)σtBe (3.8)

The relative error in the transmission function is actually smaller for the thick filters

than for the thin filters.

3.3 Si Uncertainty

For silicon, the absorption of x-rays is dependent on the x-ray energy and the

effective thickness of the silicon. The effective thickness (t) will change relative to the

angle of incident x-rays (γ) so that the absorption is:

A(E) = 1− et µSi(E)/cos γ (3.9)

Using the same substitution for cos γ as with the geometric factor, equation (3.6),

the absorption function becomes a function of the distance from the diode board to

the pinhole, d, the distance from the center of the pinhole to the center of each diode,

tangent to to the diode board, x, the thickness of the silicon tSi, and photon energy.

Following the standard variance formula, a more complicated expression for σA can

be calculated for each energy and diode. The expression for σA has been omitted but
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the total percent uncertainty is never more than 0.12%.

3.4 Results of the Uncertainty Calculations

The total uncertainty in the direct brightness measurement, σtotal, equation (3.5),

was calculated using the uncertainties above and SXR model described earlier, of

a plasma with core temperature Te(0) = 1525eV , temperature profile parameters

α = 4.5 and β = 14, core density ne(0) = 1.13·10−13cm−3 and density profile parameter

γ = 4.5. The relative uncertainties for all diodes are < 2%. The two distinguishing

factors for each diode uncertainty are the viewing angle, γ, and the Be filter thickness

used. This is apparent in Figures (3.2) and (3.3), where the uncertainties for probes

with offset pinholes, (SXR-C and SXR-D), lie directly on top of each other while the

uncertainties for probes with center pinholes (SXR-A and SXR-B) also align.

The uncertainties for a range of typical parameter values were calculated over

the following ranges to compare the effect of plasma configuration on uncertainty. The

ranges for each parameter were, Te(0) = 0.5keV −2keV , ne(0) = 0.5−1.13 ·1013cm−3,

α = 7 − 11, β = 4 − 19, and γ = 2 − 9. The total relative uncertainty did not vary

per diode by more than ∼ 0.09% in the two most extreme cases. Figure 3.4 shows

the largest change between any two parameter sets for a single set of thin filters with

a centered pinhole and a set of thin filters with an offset pinhole. This demonstrates

that the absolute error is proportional to the signal levels so that the relative percent

error is nearly constant over the measurement range of the SXR diagnostic.
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Figure 3.2: Relative error in the direct brightness through the thin filter.
The SXR-A and SXR-B profiles lie directly on top of each other and SXR-C
and SXR-D profiles lie directly on top of each other.



42

Figure 3.3: Relative error in the direct brightness through the thick filter.
The SXR-A and SXR-B profiles lie directly on top of each other and SXR-C
and SXR-D profiles lie directly on top of each other.
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Figure 3.4: The largest difference in relative errors from typical plasma
parameters. In the higher profiles, Te(0) = 0.5keV, ne(0) = 1.13 · 1013cm−3,
α = 7, β = 19, and γ = 9. For the lower profiles, Te(0) = 2keV , ne(0) =
0.5 · 1013cm−3, α = 11, β = 4, and γ = 2.
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Chapter 4

Summary and Future Work

Data from the SXR diagnostic has been analyzed within a Bayesian framework to give

most-likely distributions for different electron temperature parameters including, Te(r)

and Te(0), as well as, α, and β from the model of Te(r). These distributions were com-

bined with distributions previously made with the TS diagnostic to give the posterior

distribution, given all of the data from both diagnostics, P (Te(r), α, β|dTS, dSXR, σ, I).

The posterior provides a clearer understanding of the temperature profile for a MH

plasma shot on MST than from the raw data of the two diagnostics separately.

The IDA project will benefit from an optimized mapping of the spatial SXR

chords and TS points to the flux surfaces of a DAx configuration plasma. When the

magnetic structures become increasingly complicated, flux surfaces offer the simplest

method for comparing the measurements of the two toroidally separated diagnostics.

With an effective scheme for relating SXR to TS, Bayesian analysis can be used for

more plasma configurations.

The other improvement for the IDA project is the implementation of an advanced

searching algorithm, such as MCMC. The current method, that creates the entire

posterior distribution, does not have the necessary flexibility to incorporate more
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parameters to optimize. Future analysis would hopefully include models for Zeff , ne,

and even line or recombination radiation. Currently, computation time and space are

strictly limiting factors that would not allow for such an increase in the number of

parameters.

The total systematic uncertainty in the SXR diagnostic was calculated to be

< 2% of the total signal for all diodes. It offers a slight improvement on previously

assumed uncertainties. The uncertainty was calculated for a wide range of plasma

configurations and is shown to vary proportional to signal level, keeping a relatively

constant percent error.

The SXR measurement is known to be very sensitive to the purity level of the

Be filters. Further analysis of the relation between measured brightness and impu-

rity content is necessary. Once it is better understood, it can be incorporated into

uncertainty calculation and included in Bayesian uncertainties of IDA.
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